(一種除濕機系統、除濕機及控制方法與流程)
本發明涉及除濕機技術領域,尤其是涉及一種除濕機系統、除濕機及控制方法。
背景技術:
通常除濕機需要滿足冬季加熱除濕模式、夏季制冷除濕模式、泳池恒溫除濕模式三種基本功能,需要對系統進行較復雜的設計,但是現有的系統主要利用多個電磁二通閥通過不同的通斷控制實現三種模式之間的切換,管路設計、控制邏輯復雜,系統控制可靠性低。
技術實現要素:
本發明提供了一種除濕機系統、除濕機及控制方法,以解決現有的除濕機利用多個電磁二通閥實現除濕模式控制導致零件多、控制復雜、管路設計復雜的技術問題,本發明能夠優化除濕機系統的結構,減少系統中的電控元件,并極大簡化了電控布線工作,降低電控邏輯的復雜程度,提高系統控制的可靠性。
為了解決上述技術問題,本發明實施例提供了一種除濕機系統,包括壓縮機、熱交換裝置、節流裝置以及具有若干個四通換向閥的閥門裝置;
所述壓縮機、所述閥門裝置、所述熱交換裝置、所述節流裝置通過管路連接并形成冷媒循環回路;其中,所述閥門裝置的輸入端與所述壓縮機的輸出端連接,所述閥門裝置的輸出端通過所述熱交換裝置和/或所述節流裝置連接至所述壓縮機的輸入端。
作為優選方案,若干個所述四通換向閥的其中一個四通換向閥的輸入端與所述壓縮機的輸出端連接,其余的四通換向閥的輸入端分別連接所述其中一個四通換向閥的輸出端。
作為優選方案,所述閥門裝置包括第一四通換向閥、第二四通換向閥,所述熱交換裝置包括第一換熱器、第二換熱器、第三換熱器、第四換熱器,所述節流裝置包括第一節流組件、第二節流組件;
所述壓縮機的輸出端與所述第一四通換向閥的第一閥口連接,所述第一四通換向閥的第二閥口通過所述第一換熱器連接至所述第一節流組件的第一端,所述第一四通換向閥的第三閥口通過所述第二節流組件連接至所述壓縮機的輸入端;
所述第一四通換向閥的第四閥口與所述第二四通換向閥的第一閥口連接,所述第二四通換向閥的第二閥口通過所述第二換熱器連接至所述第一節流組件的第一端,所述第二四通換向閥的第三閥口與所述第二節流組件的第一端連接,所述第二四通換向閥的第四閥口通過所述第三換熱器連接至所述第一節流組件的第一端,
所述第一節流組件的第二端通過所述第四換熱器連接至所述壓縮機的輸入端,所述第二節流組件的第二端與所述壓縮機的輸入端連接。
作為優選方案,所述第一換熱器為管式換熱器,所述第二換熱器為室內換熱器,所述第三換熱器為室外換熱器,所述第四換熱器為蒸發換熱器。
作為優選方案,所述壓縮機、所述第一四通換向閥、所述第二四通換向閥、所述第一換熱器、所述第二換熱器、所述第三換熱器、所述第四換熱器、所述第一節流組件、所述第二節流組件均與除濕機控制器電連接并受所述除濕機控制器控制。
本發明實施例還提供一種用于所述除濕機系統的控制方法,由所述除濕機控制器執行,包括以下步驟:
當運行恒溫除濕模式時,控制所述第一四通換向閥的第一閥口和第二閥口連通,以使冷媒沿所述壓縮機、所述壓縮機的輸出端、所述第一四通換向閥、所述第一換熱器、所述第一節流組件、所述第四換熱器、所述壓縮機的輸入端循環流動。
作為優選方案,所述方法還包括:
在所述恒溫除濕模式結束后,運行第一冷媒回收模式;
在所述第一冷媒回收模式運行時,控制所述第二四通換向閥的第二閥口和第三閥口連通、所述第二四通換向閥的第四閥口和第一閥口連通、所述第一四通換向閥的第四閥口和第三閥口連通,以使所述第二換熱器的冷媒沿所述第二四通換向閥、所述第二節流組件、所述壓縮機的輸入端流回至所述壓縮機中,所述第三換熱器的冷媒沿所述第二四通換向閥、所述第一四通換向閥、所述第二節流組件、所述壓縮機的輸入端流回至所述壓縮機中。
本發明實施例還提供一種用于所述除濕機系統的控制方法,由所述除濕機控制器執行,包括以下步驟:
當運行夏季制冷除濕模式時,控制所述第一四通換向閥的第一閥口和第四閥口連通、所述第二四通換向閥的第一閥口和第四閥口連通,以使冷媒沿所述壓縮機的輸出端、所述第一四通換向閥、所述第二四通換向閥、所述第三換熱器、所述第一節流組件、所述第四換熱器、所述壓縮機的輸入端循環流動。
作為優選方案,所述方法還包括:
在所述夏季制冷除濕模式結束后,運行第二冷媒回收模式;
在所述第二冷媒回收模式運行時,控制所述第二四通換向閥的第二閥口和第三閥口連通、所述第一四通換向閥的第二閥口和第三閥口連通,以使所述第二換熱器的冷媒沿所述第二四通換向閥、所述第二節流組件、所述壓縮機的輸入端流回至所述壓縮機中,所述第一換熱器的冷媒沿所述第一四通換向閥、所述第二節流組件、所述壓縮機的輸入端流回至所述壓縮機中。
本發明實施例還提供一種用于所述除濕機系統的控制方法,由所述除濕機控制器執行,包括以下步驟:
當運行冬季加熱除濕模式時,控制所述第一四通換向閥的第一閥口和第四閥口連通、所述第二四通換向閥的第一閥口和第二閥口連通,以使冷媒沿所述壓縮機的輸出端、所述第一四通換向閥、所述第二四通換向閥、所述第二換熱器、所述第一節流組件、所述第四換熱器、所述壓縮機的輸入端循環流動。
作為優選方案,所述方法還包括:
在所述冬季加熱除濕模式結束后,運行第三冷媒回收模式;
在所述第三冷媒回收模式運行時,控制所述第二四通換向閥的第四閥口和第三閥口連通、所述第一四通換向閥的第二閥口和第三閥口連通,以使所述第三換熱器的冷媒沿所述第二四通換向閥、所述第二節流組件、所述壓縮機的輸入端流回至所述壓縮機中,所述第一換熱器的冷媒沿所述第一四通換向閥、所述第二節流組件、所述壓縮機的輸入端流回至所述壓縮機中。
本發明實施例還提供一種除濕機,包括機殼和如上所述的除濕機系統,所述除濕機系統應用如上所述的控制方法。
相比于現有技術,本發明實施例具有如下有益效果:
1、通過將所述壓縮機排出的冷媒統一集中在所述閥門裝置中,利用所述閥門裝置的閥門選擇、開閉實現冷媒的不同流向和路徑,從而將冷媒流向所述熱交換裝置。
2、所述閥門裝置可由若干個四通閥組成,相比現有的系統采用多個電磁二通閥的方式,發明利用四通閥的換向功能,降低了電控邏輯的復雜程度,實現多種路徑的靈活切換,控制邏輯更加簡單和可靠,而且當所述閥門裝置有多個四通閥組成時,則系統能夠適配多個熱交換器,具有較高的通用性和靈活性。
3、系統由所述壓縮機、所述閥門裝置、所述熱交換裝置、所述節流裝置通過管路依次連接形成冷媒循環回路,布局簡單,無需使用多個電磁二通閥分散安裝在多條管路中實現冷媒管路的控制,機組工藝彎管設計管路明顯減少,極大的減少了設計和工藝工作量,同時也降低了管路成本。
4、在冬季加熱除濕模式、夏季制冷除濕模式、恒溫除濕模式不同模式運行時,本實施例能夠及時地將系統中其他換熱器中的冷媒進行回收,用于系統的正常運行,保證了系統運行時的冷媒量,從而有效提高機組的能力與能效。
5、所述除濕機系統默認四通換向閥在不得電為冬季加熱除濕模式,避免了系統堵塞導致異常而引發機組運行瞬間高壓風險的,有效提高了可靠性和安全性。
附圖說明
圖1是本發明實施例中的除濕機系統的結構示意圖;
圖2是本發明實施例中的除濕機系統在恒溫除濕模式下主路及冷媒回收流路冷媒流動方向示意圖;
圖3是本發明實施例中的除濕機系統在夏季制冷除濕模式下主路及冷媒回收流路冷媒流動方向示意圖;
圖4是本發明實施例中的除濕機系統在冬季制熱除濕模式下主路及冷媒回收流路冷媒流動方向示意圖。
具體實施方式
下面將結合本發明實施例中的附圖,對本發明實施例中的技術方案進行清楚、完整地描述,顯然,所描述的實施例僅僅是本發明一部分實施例,而不是全部的實施例。基于本發明中的實施例,本領域普通技術人員在沒有作出創造性勞動前提下所獲得的所有其他實施例,都屬于本發明保護的范圍。
請參見圖1,本發明優選實施例提供了一種除濕機系統,包括壓縮機y、熱交換裝置、節流裝置以及具有若干個四通換向閥的閥門裝置;
所述壓縮機y、所述閥門裝置、所述熱交換裝置、所述節流裝置通過管路連接并形成冷媒循環回路;其中,所述閥門裝置的輸入端與所述壓縮機的輸出端連接,所述閥門裝置的輸出端通過所述熱交換裝置和/或所述節流裝置連接至所述壓縮機的輸入端。
在本實施例中,通過將所述壓縮機排出的冷媒統一集中在所述閥門裝置中,利用所述閥門裝置的閥門選擇、開閉實現冷媒的不同流向和路徑,從而將冷媒流向所述熱交換裝置。所述閥門裝置可由若干個四通閥組成,相比現有的系統采用多個電磁二通閥的方式,發明利用四通閥的換向功能,降低了電控邏輯的復雜程度,實現多種路徑的靈活切換,控制邏輯更加簡單和可靠,而且當所述閥門裝置有多個四通閥組成時,則系統能夠適配多個熱交換器,具有較高的通用性和靈活性。系統由所述壓縮機y、所述閥門裝置、所述熱交換裝置、所述節流裝置通過管路依次連接形成冷媒循環回路,布局簡單,無需使用多個電磁二通閥分散安裝在多條管路中實現冷媒管路的控制,機組工藝彎管設計管路明顯減少,極大的減少了設計和工藝工作量,同時也降低了管路成本。
應當說明的是,在一個獨立系統中配置1個所述壓縮機y,若干個所述四通換向閥的其中一個四通換向閥的輸入端與所述壓縮機的輸出端連接,其余的四通換向閥的輸入端分別連接所述其中一個四通換向閥的輸出端。在雙系統或多系統中,則配置2個壓縮機或多個壓縮機,若干個所述四通換向閥中,2個或多個四通換向閥的輸入端與對應的所述壓縮機的輸出端連接。
請參見圖1至圖4,在其中一個優選實施例中,所述閥門裝置包括第一四通換向閥f1、第二四通換向閥f2;所述熱交換裝置包括第一換熱器a1、第二換熱器a2、第三換熱器a3、第四換熱器a4,所述節流裝置包括第一節流組件t1、第二節流組件t2;
所述壓縮機y的輸出端與所述第一四通換向閥f1的第一閥口d1連接,所述第一四通換向閥f1的第二閥口e1通過第一換熱器a1連接至第一節流組件t1的第一端,所述第一四通換向閥f1的第三閥口s1通過第二節流組件t2連接至所述壓縮機y的輸入端;
所述第一四通換向閥f1的第四閥口c1與所述第二四通換向閥f2的第一閥口d2連接,所述第二四通換向閥f2的第二閥口e2通過第二換熱器a2連接至所述第一節流組件t1的第一端,所述第二四通換向閥f2的第三閥口s2與所述第二節流組件t2的第一端連接,所述第二四通換向閥f2的第四閥口c2通過第三換熱器a3連接至所述第一節流組件t1的第一端,
所述第一節流組件t1的第二端通過第四換熱器a4連接至所述壓縮機y的輸入端,所述第二節流組件t2的第二端與所述壓縮機y的輸入端連接。
在本實施例中,應當說明的是,所述第一換熱器a1為管式換熱器,所述第二換熱器a2為室內換熱器,所述第三換熱器a3為室外換熱器,所述第四換熱器a4為蒸發換熱器,所述第一節流組件t1、所述第二節流組件t2為電子閥或黃銅分配器組件,以實現分液節流功能,從而在各種不同模式下,同時對其他不工作的各個換熱器中的冷媒進行回收,并經過黃銅分配器節流后變為氣態冷媒后回到壓縮機y中,用于系統的正常運行,保證了系統運行時的冷媒量。
此外,可以理解的是,所述壓縮機y、所述第一四通換向閥f1、所述第二四通換向閥f2、所述第一換熱器a1、所述第二換熱器a2、所述第三換熱器a3、所述第四換熱器a4、所述第一節流組件t1、所述第二節流組件t2均與除濕機控制器電連接并受所述除濕機控制器控制。
請參見圖2至圖4,可以理解的是,為了使結構更為合理化,在所述第二節流組件t2與所述閥門裝置之間的連接管路上安裝第一單向閥,在所述第二換熱器a2與所述第一節流組件t1之間的連接管路上安裝第二單向閥,在所述第三換熱器a3與所述第一節流組件t1之間的連接管路上安裝第三單向閥,在所述第一換熱器與所述第一節流組件t1之間的連接管路上安裝第四單向閥,以起到防止冷媒倒流等等作用。
本實施例通過采用兩組雙極四通閥(所述第一四通換向閥f1、所述第二四通換向閥f2)組成主路組件,能夠運行冬季加熱除濕模式、夏季制冷除濕模式、恒溫除濕模式三種模式之間的切換,直接替代6組電磁二通閥,這樣減少了系統電控元件,極大簡化了電控布線的工作,簡化了電控布局,降低了電控邏輯的復雜程度,實現控制邏輯更加簡單和可靠。
下面是對除濕機系統在各種模式下運行時,各閥件動作及系統冷媒流動方向及冷媒回收流動方向如下:
說明:
所述第一四通換向閥f1的接口設置:第一閥口d1、第二閥口e1、第三閥口s1、第四閥口c1;
所述第二四通換向閥f2的接口設置:第一閥口d2、第二閥口e2、第三閥口s2、第四閥口c2。
如圖2所示,在其中一種優選方案中,用于所述除濕機系統的控制方法,由所述除濕機控制器執行,包括以下步驟:
當運行恒溫除濕模式時,控制所述第一四通換向閥f1的第一閥口d1和第二閥口連通,以使冷媒沿所述壓縮機y、所述壓縮機y的輸出端、所述第一四通換向閥f1、所述第一換熱器a1、所述第一節流組件t1、所述第四換熱器a4、所述壓縮機y的輸入端循環流動。
在本實施例中,當運行所述恒溫除濕模式時,所述第一四通換向閥f1得電,所述第二四通換向閥f2失電;d1與e1連通、s1與c1連通;c1與d2連通、d2與c2連通、e2與s2連通;
則主路流通方向:冷媒由所述壓縮機y流向所述第一四通換向閥f1的d1入口;從d1-e1-所述第一換熱器a1(管式換熱器)-所述第一節流組件t1-所述第四換熱器a4(蒸發換熱器)-回到所述壓縮機y。
針對于該模式下的冷媒回收方向:
所述第二換熱器a2(室內冷凝翅片)-e2-s2-所述第二節流組件t2-回到所述壓縮機y;
所述第三換熱器a3(室外冷凝翅片)-c2-d2-c1-s1-所述第二節流組件t2-回到所述壓縮機y;
具體為:在所述恒溫除濕模式結束后,運行第一冷媒回收模式;
在所述第一冷媒回收模式運行時,控制所述第二四通換向閥f2的第二閥口e2和第三閥口連通、所述第二四通換向閥f2的第四閥口c2和第一閥口連通、所述第一四通換向閥f1的第四閥口c1和第三閥口連通,以使所述第二換熱器a2的冷媒沿所述第二四通換向閥f2、所述第二節流組件t2、所述壓縮機y的輸入端流回至所述壓縮機y中,所述第三換熱器a3的冷媒沿所述第二四通換向閥f2、所述第一四通換向閥f1、所述第二節流組件t2、所述壓縮機y的輸入端流回至所述壓縮機y中。
如圖3所示,在其中一種優選方案中,用于所述除濕機系統的控制方法,由所述除濕機控制器執行,包括以下步驟:
當運行夏季制冷除濕模式時,控制所述第一四通換向閥f1的第一閥口d1和第四閥口連通、所述第二四通換向閥f2的第一閥口d2和第四閥口連通,以使冷媒沿所述壓縮機y的輸出端、所述第一四通換向閥f1、所述第二四通換向閥f2、所述第三換熱器a3、所述第一節流組件t1、所述第四換熱器a4、所述壓縮機y的輸入端循環流動。
在本實施例中,當運行所述夏季制冷除濕模式時,所述第一四通換向閥f1失電、所述第二四通換向閥f2失電;d1與c1連通、c1與d2、c2連通;e1與s1連通、e2與s2連通;
則主路流通方向:冷媒由所述壓縮機y流向所述第一四通換向閥f1-d1-c1-所述第二四通換向閥f2-d2-c2-所述第三換熱器a3(室外冷凝翅片)-所述第一節流組件t1-所述第四換熱器a4(蒸發換熱器)-回到所述壓縮機y;
針對于該模式下的冷媒回收方向:
所述第二換熱器a2(室內冷凝翅片)-e2-s2-所述第二節流組件t2-回到所述壓縮機y
所述第一換熱器a1(管式換熱器)-e1-s1-所述第二節流組件t2-回到所述壓縮機y;
具體為:在所述夏季制冷除濕模式結束后,運行第二冷媒回收模式;
在所述第二冷媒回收模式運行時,控制所述第二四通換向閥f2的第二閥口e2和第三閥口連通、所述第一四通換向閥f1的第二閥口e1和第三閥口連通,以使所述第二換熱器a2的冷媒沿所述第二四通換向閥f2、所述第二節流組件t2、所述壓縮機y的輸入端流回至所述壓縮機y中,所述第一換熱器a1的冷媒沿所述第一四通換向閥f1、所述第二節流組件t2、所述壓縮機y的輸入端流回至所述壓縮機y中。
如圖4所示,在其中一種優選方案中,用于所述除濕機系統的控制方法,由所述除濕機控制器執行,包括以下步驟:
當運行冬季加熱除濕模式時,控制所述第一四通換向閥f1的第一閥口d1和第四閥口連通、所述第二四通換向閥f2的第一閥口d2和第二閥口連通,以使冷媒沿所述壓縮機y的輸出端、所述第一四通換向閥f1、所述第二四通換向閥f2、所述第二換熱器a2、所述第一節流組件t1、所述第四換熱器a4、所述壓縮機y的輸入端循環流動。
在本實施例中,當運行所述冬季加熱除濕模式時,所述第一四通換向閥f1失電、所述第二四通換向閥f2得電;d1與c1連通、d2與e2連通;s2和c2連通
則主路流通方向:冷媒由所述壓縮機y流向所述第一四通換向閥f1-d1-c1-所述第二四通換向閥f2-d2-e2-所述第二換熱器a2(室內冷凝翅片)-所述第一節流組件t1-所述第四換熱器a4(蒸發換熱器)-回到所述壓縮機y。
針對于該模式下的冷媒回收方向:
所述第三換熱器a3(室外冷凝翅片)-c2-s2-所述第二節流組件t2-回到所述壓縮機y;
所述第一換熱器a1(管式換熱器)-e1-s1-所述第二節流組件t2-回到所述壓縮機y;
具體為:所述方法還包括:
在所述冬季加熱除濕模式結束后,運行第三冷媒回收模式;
在所述第三冷媒回收模式運行時,控制所述第二四通換向閥f2的第四閥口c2和第三閥口連通、所述第一四通換向閥f1的第二閥口e1和第三閥口連通,以使所述第三換熱器a3的冷媒沿所述第二四通換向閥f2、所述第二節流組件t2、所述壓縮機y的輸入端流回至所述壓縮機y中,所述第一換熱器a1的冷媒沿所述第一四通換向閥f1、所述第二節流組件t2、所述壓縮機y的輸入端流回至所述壓縮機y中。
本發明實施例還提供一種除濕機,包括機殼和如上所述的除濕機系統,所述除濕機系統應用如上所述的控制方法。
綜上所述,本發明實施例提供了一種除濕機系統、除濕機及控制方法,相比于現有技術,本發明實施例具有如下有益效果:
1、本實施例通過所述第一四通換向閥f1、所述第二四通換向閥f2組成了雙極控制組件,能夠運行冬季加熱除濕模式、夏季制冷除濕模式、恒溫除濕模式功能,相對于現有技術采用6個電磁二通閥,本實施例減少了系統電控元件,極大簡化了電控布線的工作,簡化了電控布局,降低了電控邏輯的復雜程度,實現控制邏輯更加簡單和可靠;
2、所述除濕機系統的管路設計得到簡化,機組工藝彎管設計管路明顯減少,極大的減少了設計和工藝工作量,同時也降低了管路成本;
3、在冬季加熱除濕模式、夏季制冷除濕模式、恒溫除濕模式不同模式運行時,本實施例能夠及時地將系統中其他換熱器中的冷媒進行回收,用于系統的正常運行,保證了系統運行時的冷媒量,從而有效提高機組的能力與能效;
4、所述除濕機系統默認四通換向閥在不得電為冬季加熱除濕模式,避免了系統堵塞導致異常而引發機組運行瞬間高壓風險的,有效提高了可靠性和安全性。
以上所述是本發明的優選實施方式,應當指出,對于本技術領域的普通技術人員來說,在不脫離本發明原理的前提下,還可以做出若干改進和潤飾,這些改進和潤飾也視為本發明的保護范圍。