(沸石轉(zhuǎn)輪—催化氧化VOCs治理裝置在包裝行業(yè)中的應(yīng)用)
原標(biāo)題:沸石轉(zhuǎn)輪—催化氧化VOCs治理裝置在包裝行業(yè)中的應(yīng)用
摘要:介紹了一種將沸石轉(zhuǎn)輪與催化氧化技術(shù)協(xié)同組合并用于揮發(fā)性有機(jī)化合物(VOCs)廢氣治理的裝置。通過對包裝行業(yè)所排放的VOCs廢氣風(fēng)量、VOCs成分及其質(zhì)量濃度與特性的研究,結(jié)合實際案例分析,發(fā)現(xiàn)采用疏水性分子篩的沸石轉(zhuǎn)輪與催化氧化組合裝置具有高去除率與高經(jīng)濟(jì)性效果。某生產(chǎn)線所排放的廢氣風(fēng)量約為m~3/h(標(biāo)準(zhǔn)狀態(tài)),質(zhì)量濃度為53.03mg/m3,符合大風(fēng)量低質(zhì)量濃度的特性。治理后,廢氣中的苯、甲苯、二甲苯、非甲烷烴(NMHC)的去除效率可達(dá)98%以上。對裝置運行能源的計算對比表明,在催化氧化工段,液化天然氣(LNG)是最經(jīng)濟(jì)的能源。
因涂裝、彩色印刷與塑膜復(fù)合工序中使用大量溶劑型油墨與稀釋用有機(jī)溶劑等物質(zhì),我國每年僅包裝行業(yè)揮發(fā)性有機(jī)化合物(VOCs)的排放量可達(dá)約200萬~300萬t,所產(chǎn)生的VOCs廢氣通常采用活性炭吸附、光催化、等離子、催化氧化/蓄熱式催化氧化(CO/RCO)、蓄熱式焚燒(RTO)等方法進(jìn)行治理,其中又以催化氧化法與焚燒法最為普及。
包裝廢氣具有以下特點:(1)廢氣成分復(fù)雜,含有多種有機(jī)物質(zhì);(2)油墨干燥時,由于需要嚴(yán)格控制生產(chǎn)車間的廢氣質(zhì)量濃度,通常引入較大風(fēng)量來進(jìn)行通風(fēng),因此所產(chǎn)生的VOCs廢氣風(fēng)量大、質(zhì)量濃度低。傳統(tǒng)催化氧化或焚燒裝置適用于處理不同風(fēng)量的中高質(zhì)量濃度VOCs廢氣,設(shè)備大小主要取決于其自身的最大處理風(fēng)量。但在處理大風(fēng)量低質(zhì)量濃度的VOCs廢氣時,采用單一催化氧化或焚燒方法需要龐大的裝置,不僅一次設(shè)備的投資成本高,而且會大幅增加后續(xù)燃料的運行成本。因此實際處理中需引入沸石轉(zhuǎn)輪技術(shù),先對大風(fēng)量低質(zhì)量濃度VOCs廢氣進(jìn)行吸附,將其濃縮為小風(fēng)量高質(zhì)量濃度的氣體后再進(jìn)行催化氧化處理。
隨著新環(huán)保法規(guī)的修訂出臺與各地對VOCs排放限制的嚴(yán)控,行業(yè)對VOCs治理設(shè)備提出了更高的要求。相比于單一VOCs廢氣處理設(shè)備,沸石轉(zhuǎn)輪-催化氧化組合裝置具有設(shè)備體積小、去除效率高、安全性與經(jīng)濟(jì)性良好的多重優(yōu)勢,這也將是未來VOCs廢氣治理裝置的主流發(fā)展方向。
01
沸石轉(zhuǎn)輪-催化氧化裝置原理
目前國內(nèi)包裝行業(yè)廢氣具有排放風(fēng)量大、質(zhì)量濃度低、廢氣成分復(fù)雜等特點,且一般為有組織排放。對于大風(fēng)量低質(zhì)量濃度VOCs廢氣而言,僅通過催化氧化或焚燒裝置單獨進(jìn)行處理時,一次設(shè)備的投資費用大,后期運行成本較高;采用沸石轉(zhuǎn)輪-催化氧化技術(shù)的VOCs廢氣處理裝置可先對大風(fēng)量低質(zhì)量濃度的廢氣進(jìn)行分離濃縮,使其形成高質(zhì)量濃度、小風(fēng)量的氣體后再進(jìn)行催化氧化處理。
1.1沸石轉(zhuǎn)輪-催化氧化裝置工藝流程
VOCs沸石轉(zhuǎn)輪-催化氧化裝置采用沸石濃縮與催化劑氧化組合技術(shù),由多級過濾器、沸石轉(zhuǎn)輪、吸附風(fēng)機(jī)、脫附風(fēng)機(jī)、換熱器、催化氧化裝置等分段設(shè)備組成,具體見圖1。
含有VOCs的有機(jī)廢氣先經(jīng)過初步多級過濾后,由鼓風(fēng)機(jī)送至沸石轉(zhuǎn)輪分段裝置吸附區(qū)(A區(qū))進(jìn)行吸附處理,生成的潔凈空氣被直接排出。隨著沸石轉(zhuǎn)輪的不停旋轉(zhuǎn),已飽和的轉(zhuǎn)輪吸附區(qū)部分轉(zhuǎn)至再生區(qū)(R區(qū)),接受來自反向高溫再生空氣的吹洗并進(jìn)行脫附。脫附后的高質(zhì)量濃度有機(jī)廢氣直接進(jìn)入催化氧化裝置進(jìn)行氧化分解。經(jīng)過脫附區(qū)的VOCs廢氣隨后旋轉(zhuǎn)進(jìn)入冷卻區(qū)(P區(qū)),降溫后返回吸附區(qū)進(jìn)行循環(huán)操作。由于脫附再生區(qū)的空氣風(fēng)量一般僅為處理區(qū)風(fēng)量的1/10,因此再生后廢氣中的VOCs質(zhì)量濃度約為濃縮前的10倍。
沸石轉(zhuǎn)輪再生濃縮后的高質(zhì)量濃度有機(jī)廢氣被吹入下游催化氧化裝置,并由燃燒器對其進(jìn)行升溫,預(yù)熱至350℃后進(jìn)行催化氧化反應(yīng)。催化氧化全過程采用蜂窩狀鉑(Pt)觸煤,廢氣中VOCs經(jīng)催化氧化反應(yīng)生成無毒無害的二氧化碳與水。
通過催化氧化工段后,被排出的凈化氣體溫度約為360℃;為充分利用余熱,將催化氧化設(shè)備凈化后的氣體與再生用廢氣進(jìn)行熱交換,升溫后的再生廢氣用于沸石轉(zhuǎn)輪脫附區(qū)的脫附。
1.2沸石轉(zhuǎn)輪濃縮分段裝置結(jié)構(gòu)與原理
1.2.1沸石轉(zhuǎn)輪的結(jié)構(gòu)與組成
當(dāng)廢氣具有大風(fēng)量低質(zhì)量濃度的特性時,可利用沸石轉(zhuǎn)輪內(nèi)部分子篩低溫高吸附與高溫高脫附的特點,對有機(jī)廢氣進(jìn)行吸附-脫附濃縮。所產(chǎn)生廢氣的質(zhì)量濃度約為原氣體質(zhì)量濃度的10~20倍,為后續(xù)催化氧化處理節(jié)約了設(shè)備與運營成本。
沸石濃縮轉(zhuǎn)輪結(jié)構(gòu)分為吸附區(qū)(A區(qū))、再生區(qū)(R區(qū))與冷卻區(qū)(P區(qū))。由加工好的波紋形以及平板狀陶瓷纖維紙采用無機(jī)黏合的方式制成蜂窩狀轉(zhuǎn)輪,再將具有疏水性的沸石分子篩涂抹在轉(zhuǎn)輪通道上,使其具有吸附性。沸石分子篩的化學(xué)通式為Mx/m[(AlO2)x·(SiO2)y]·zH2O,是一種結(jié)晶硅酸鋁金屬鹽的多孔晶體,其中的硅氧四面體和鋁氧四面體通過共享氧原子相互連接形成骨架結(jié)構(gòu)。分子篩晶體的內(nèi)部具有不同大小的孔穴,可以吸附比自身孔徑小的分子,排出比其孔徑大的分子。包裝印刷行業(yè)廢氣的相對濕度一般小于70%,沸石轉(zhuǎn)輪對VOCs的吸附率可達(dá)到90%以上。隨著廢氣相對濕度的增加,吸附效率會有所下降,因此,必要時可在廢氣進(jìn)入沸石轉(zhuǎn)輪前對其進(jìn)行加熱除濕。根據(jù)風(fēng)量,設(shè)置沸石轉(zhuǎn)輪以1~6r/h的速率進(jìn)行旋轉(zhuǎn)。
1.2.2沸石轉(zhuǎn)輪適用風(fēng)量與VOCs質(zhì)量濃度
針對不同VOCs質(zhì)量濃度的廢氣,所采用的處理方式不盡相同,而沸石轉(zhuǎn)輪常被用于大風(fēng)量低質(zhì)量濃度有機(jī)物廢氣的濃縮處理。不同質(zhì)量濃度VOCs氣體的處理方法見表1。
對于VOCs質(zhì)量濃度低于600mg/m3的大風(fēng)量廢氣,采用沸石轉(zhuǎn)輪濃縮裝置可達(dá)到后續(xù)節(jié)能處理的目的。根據(jù)目前轉(zhuǎn)輪的直徑與厚度,在質(zhì)量濃度低于600mg/m3的情況下,可處理風(fēng)量范圍為0.4~18m3/h。
1.2.3沸石轉(zhuǎn)輪對包裝印刷廢氣中VOCs的吸附曲線
包裝行業(yè)廢氣中主要含有鄰二甲苯、異丙醇、乙酸乙酯、己二酸等苯系物,醇類及酯類物質(zhì),因此需要對沸石轉(zhuǎn)輪上的疏水性分子篩進(jìn)行吸附效率評價。根據(jù)吸附效率與時間的關(guān)系對沸石轉(zhuǎn)輪分子篩的吸附性能進(jìn)行了相關(guān)實驗,分別采用質(zhì)量濃度為500mg/m3的苯系物、400mg/m3的醇類物以及300mg/m3的酯類物質(zhì)作為處理廢氣成分。結(jié)果見圖2。
圖2表明,對于包裝行業(yè)廢氣中含有的VOCs物質(zhì)(即苯系物、醇類與酯類物質(zhì)),疏水性分子篩均能進(jìn)行有效吸附。
1.3催化氧化分段裝置結(jié)構(gòu)與原理
催化氧化分段裝置采用貴金屬Pt作催化劑,對沸石轉(zhuǎn)輪處理后的高質(zhì)量濃度廢氣進(jìn)行預(yù)熱并將其催化氧化分解。其原理在于借助催化劑降低反應(yīng)活化能,使得氧化反應(yīng)發(fā)生在較低的起燃溫度(250~400℃)。由于待處理廢氣中可能含有使催化劑中毒的物質(zhì)(含硫、磷、硅等元素的化合物),因此需在前端設(shè)置預(yù)處理工序,即采用陶瓷為載體的前處理劑(見表2)對使催化劑中毒的物質(zhì)進(jìn)行攔截。當(dāng)進(jìn)入催化劑室的高質(zhì)量濃度廢氣溫度較低時,可通過燃燒器對其進(jìn)行預(yù)熱,使溫度上升至350℃;由于該溫度為氧化催化劑最佳活性溫度,此時VOCs的處理效率可達(dá)95%以上。
溫度不同時,催化劑對VOCs的處理活性效率也不同,因此需要尋找催化劑的最佳使用溫度。根據(jù)VOCs廢氣中含有的主要有機(jī)揮發(fā)物(正己烷、二甲苯、苯、乙醇等物質(zhì)),在不同入口溫度條件下對其進(jìn)行轉(zhuǎn)化率測試評價,結(jié)果見圖3。
由圖3可知,在350℃下,主要的揮發(fā)性有機(jī)物質(zhì)基本可被催化劑氧化去除。
02
包裝行業(yè)廢氣的組成與測試排放標(biāo)準(zhǔn)
2.1包裝行業(yè)VOCs廢氣主要成分
包裝行業(yè)所產(chǎn)生的VOCs廢氣中主要含有鄰二甲苯、異丙醇、甲氧基丙醇、乙酸乙酯、乙酸丙酯、己二酸等苯系物、酯類與醇類物質(zhì)。
2.2包裝行業(yè)測試排放標(biāo)準(zhǔn)
當(dāng)前我國各省采用的VOCs控制標(biāo)準(zhǔn)不盡相同,最常用的標(biāo)準(zhǔn)為天津地標(biāo)DB12/524—2014《工業(yè)企業(yè)揮發(fā)性有機(jī)物排放控制標(biāo)準(zhǔn)》,其中對苯、甲苯、二甲苯與VOCs的排放要求見表3。相應(yīng)測試方法采用HJ734—2014《固定污染源廢氣揮發(fā)性有機(jī)物的測定固相吸附-熱脫附/氣相色譜-質(zhì)譜法》,其中VOCs測試內(nèi)容為24項:丙酮、異丙醇、正己烷、乙酸乙酯、苯六甲基二硅氧烷、3-戊酮、正庚烷、甲苯、環(huán)戊酮、乳酸乙酯、乙酸丁酯(醋酸丁酯)、丙二醇單甲醚乙酸酯、乙苯、對/間二甲苯、2-庚酮、苯乙烯、鄰二甲苯、苯甲醚、苯甲醛、1-癸烯、2-壬酮、1-十二烯等。
03
沸石轉(zhuǎn)輪-催化氧化裝置的效果分析與經(jīng)濟(jì)性對比
3.1應(yīng)用案例
某包裝生產(chǎn)線所排放的廢氣中含VOCs,質(zhì)量濃度約為53.03mg/m3,風(fēng)量為m3/h,當(dāng)?shù)夭捎肈B12/524—2014,分別對苯、甲苯、二甲苯、VOCs進(jìn)行排放限制。
由于包裝生產(chǎn)線VOCs廢氣的質(zhì)量濃度偏低(<600mg/m3),需采用沸石轉(zhuǎn)輪-催化氧化裝置對廢氣進(jìn)行濃縮后再作加熱催化氧化處理。6條生產(chǎn)線入口風(fēng)量Q1=m3/h,每天生產(chǎn)16h,工作日按330d/a計算,那么每年排放的VOCs的總量約為:m總=53.03mg/m3×m3/h×5280h≈4.2t/a。經(jīng)沸石轉(zhuǎn)輪-催化氧化裝置處理前后的廢氣VOCs質(zhì)量濃度見表4。
根據(jù)實際測量結(jié)果可知,沸石轉(zhuǎn)輪-催化氧化裝置對大風(fēng)量低質(zhì)量濃度包裝印刷廢氣中VOCs的去除效率高達(dá)98.01%,處理后的氣體符合允許排放質(zhì)量濃度的要求。
3.2不同燃料經(jīng)濟(jì)性對比
沸石轉(zhuǎn)輪-催化氧化設(shè)備中的催化氧化工段可采用液化天然氣(LNG)、液化石油氣(LPG)或電能作為裝置運行能源,因此長期使用時需對裝置運行的經(jīng)濟(jì)性作評價對比,尋找最經(jīng)濟(jì)的使用能源。由于沸石轉(zhuǎn)輪工段均采用電能,因此僅對催化氧化工段的運行能源進(jìn)行計算。考慮到氣體經(jīng)過沸石轉(zhuǎn)輪后溫度上升、風(fēng)量大幅減小,所計算出的數(shù)值差異小、參考性較弱,因此按原入口氣體溫度與風(fēng)量對催化氧化工況進(jìn)行放大對比計算。
包裝生產(chǎn)線廢氣(有組織排放)的排放量:m3/h;VOCs初始質(zhì)量濃度:53.03mg/m3(主要成分為丙酮、甲苯、乙酸乙酯等);運行天數(shù)為330d/a;日運行時間為16h,其中裝置啟動時間為30min;催化氧化段用熱值為.84kJ/m3;LNG的價格為3.6元/m3,LPG的價格為4.2元/kg,電能的價格為0.7元/(kW·h)。
工況:入口氣體溫度T1=28℃,處理設(shè)備一次換熱氣體溫度T2=218℃,催化氧化后氣體溫度T3=360,廢氣余熱利用換熱后出口溫度T4=170℃。換熱溫度差值詳見圖4。
設(shè)需要熱量為Q;LNG使用量為G;LPG使用量為P;電能消耗為E。則:
Q=250(m3/min)×60(min/h)×(360-218)℃×1.293(kg/m3)×1.005[kJ/(kg·℃)]=.45kJ/h
G=.45(kJ/h)/.84(kJ/m3)=75.1m3/h
費用G1=75.1(m3/h)×3.6(元/m3)×330(d/a)×24(h/d)=元/a
P=.45(kJ/h)/.44(kJ/m3)×1.96(kg/m3)=106.78kg/h
費用P1=106.78(kg/h)×4.2(元/kg)×330(d/a)×24(h/d)=元/a
E=.45(kJ/h)/3600.68(kJ/kW)=768.6kW/h
費用E1=768.6(kW/h)×0.7[元/(kW·h)]×330(d/a)×24(h/d)=元/a
G1∶P1∶E1=1∶1.7∶2
不同能源的運行費用對比結(jié)果表明,采用LNG為原料時催化氧化工段的設(shè)備經(jīng)濟(jì)性最佳。
沸石轉(zhuǎn)輪-催化氧化裝置在初期投資與能源消耗方面具有明顯的經(jīng)濟(jì)優(yōu)勢,并且裝置的低溫燃燒安全性好,催化劑的使用壽命長,大大降低了裝置維護(hù)成本。
04
結(jié)語
針對大風(fēng)量低VOCs質(zhì)量濃度的包裝涂裝廢氣治理,沸石轉(zhuǎn)輪-催化氧化一體型凈化裝置具有高效、安全、經(jīng)濟(jì)的特點,對廢氣中苯系物、酯類、醇類物質(zhì)的吸附效率可達(dá)90%~97%。沸石轉(zhuǎn)輪用分子篩材質(zhì)不可燃、安全性好,可在高溫下進(jìn)行脫附再生,其使用壽命長達(dá)5~10年。催化氧化工段所采用的氧化催化劑VOCs處理效率高(95%~98%),對于間歇性工況廢氣,催化氧化比蓄熱式催化燃燒法更加節(jié)能。氧化反應(yīng)采用的催化劑使用壽命長,平均5年更換一次,并可作再生處理。整體裝置采用低溫燃燒,既節(jié)約能源又具有極高的安全性。但使用過程中也需防止諸如因滾輪內(nèi)積聚高質(zhì)量濃度VOCs而導(dǎo)致悶燒等情況的發(fā)生,因此需要對設(shè)備進(jìn)行監(jiān)控與保養(yǎng)。
在工業(yè)迅速發(fā)展及環(huán)境保護(hù)形勢日益嚴(yán)峻的今天,沸石轉(zhuǎn)輪-催化氧化裝置將會得到更廣泛的認(rèn)可及應(yīng)用。
責(zé)任編輯: